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polynomials

V B Kuznetsov†§ and E K Sklyanin‡
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‡ Steklov Mathematical Institute, Fontanka 27, St Petersburg 191011, Russia

Received 16 February 1996

Abstract. Using the Baker–Akhiezer function technique we construct a separation of variables
for the classical trigonometric three-particle Ruijsenaars model (a relativistic generalization of the
Calogero–Moser–Sutherland model). In the quantum case, an integral operatorM is constructed
from the Askey–Wilson contour integral. The operatorM transforms the eigenfunctions of the
commuting Hamiltonians (the Macdonald polynomials for the root sytemA2) into the factorized
form S(y1)S(y2) whereS(y) is a Laurent polynomial of one variable expressed in terms of the

3φ2(y) basic hypergeometric series. The inversion ofM produces a new integral representation
for theA2 Macdonald polynomials. We also present some results and conjectures for the general
n-particle case.

1. Introduction

The separation of variables (SoV) is an approach to quantum integrable systems which can
be formulated briefly as follows (for a more detailed discussion see the survey [1]).

Given a quantum-mechanical system ofn degrees of freedom possessingn commuting
Hamiltonians

[Hj,Hk] = 0 j, k = 1, 2, . . . , n (1.1)

one tries to find an operatorM that transforms any common eigenvectorPλ of the
Hamiltonians

HjPλ = hjPλ (1.2)

labelled by the quantum numbersλ = {λ1, . . . , λn} into the product

M : Pλ →
n∏
j=1

Sλ;j (yj ) (1.3)

of functions Sλ;j (yj ) each of one variable. The original multi-dimensional eigenvalue
problem (1.2) is transformed respectively into a set of simpler one-dimensional spectral
problems (separated equations)

Dj
(
yj ,

∂

∂yj
;h1, . . . , hn

)
Sλ;j (yj ) = 0 (1.4)
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where theDj are usually some differential or finite-difference operators in the variableyj
depending on the spectral parametershk. In the context of classical Hamiltonian mechanics
the above construction corresponds precisely to the standard definition of SoV in the
Hamilton–Jacobi equation.

The advent of the inverse scattering method gave new life to SoV, providing it with
the interpretation of the separated coordinatesyj (in the classical case) as the poles of the
Baker–Akhiezer (BA) function (properly the normalized eigenvector of the corresponding
Lax matrix). The unsolved question is, however, how to choose a correct normalization of
the BA function to obtain SoV for a given Lax matrix. Nevertheless, as a heuristic recipe,
the above idea has proved to be quite efficient and allowed one to find SoV for a few new
classes of classical integrable systems. In particular, SoV was found for the systems arising
from ther-matrices satisfying the classical Yang–Baxter equation in case ofAn−1 (sln) Lie
algebra. In the casesn = 2 andn = 3 the construction of SoV has been successfully
transferred to the quantum case (see [1] and references therein).

Pursuing the goal of extending the applicability of the BA function recipe, in our
previous paper [2] we studied theA2 Calogero–Sutherland (CS) model, which does not fall
into the previously studied cases since it posesses a dynamical (non-numeric)r-matrix [3].
In the quantum case, our construction of SoV produced a new integral representation for
the eigenfunctions of theA2 CS Hamiltonians (known as Jack polynomials) in terms of3F2

hypergeometric polynomials.
In the present paper we generalize the results of [2] to the three-particle Ruijsenaars

model [4], which is a relativistic analogue of the CS model. The corresponding
eigenfunctions (Macdonald polynomials [5, 6]) areq-analogues of Jack polynomials. It
comes as no surprise that the corresponding separated functions are Laurent polynomials
expressed in terms of3φ2 basic hypergeometric series. We also present some results and
conjectures for the generaln-particle problem, for instance, we connect theAn−1 type
basic hypergeometric separation polynomialsSλ(y) to a terminated case of theφD type
q-Lauricella function ofn− 1 variables.

The paper is organized as follows. In section 2 we describe the classical Ruijsenaars
model and, using the BA function technique, construct a SoV. Although the results of this
section are not used directly in what follows, they provide a useful background for the
subsequent treatment of the quantum case. In section 3 the standard facts concerning the
quantum Ruijsenaars model and Macdonald polynomials are brought together. In section 4,
after introducing the quantum Hamiltonians and Macdonald polynomials, we describe the
integral operatorM performing a SoV and formulate the main theorem whose proof takes
the rest of section 4 and part of section 5. The main part of the proof is contained in
section 4 where the properties of the operatorM are studied, whereas in section 5 the
results concerning the separated equation (a certain third-orderq-difference equation and
its nth order generalization), as well as its polynomial solutions, are collected. The main
technical tool allowing us to study the operatorM is the famous Askey–Wilson integral
identity (A.15).

Generally, SoV is aimed at simplifying the multidimensional spectral problem by
reducing it to a series of one-dimensional problems. In the case of the Calogero–Sutherland
and Ruijsenaars models, however, the spectrum and eigenfunctions are well known and are
studied by independent means. The main benefit of SoV in application to these models lies
rather in the production of new relations between special functions. In particular, inverting
the operatorM one obtains a new integral representation for theA2 Macdonald polynomials
in terms of the3φ2 basic hypergeometric functions, which is done at the end of section 4.
In section 6 we discuss the results thus obtained and the possibility of their generalization
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to theAn, n > 2 case. Two appendices, A and B, respectively contain a collection of
necessary formulae fromq-analysis and some auxiliary results concerning the operatorM.

2. The classical Ruijsenaars model

In the spirit of q-analysis, we prefer to use exponentiated canonical coordinates and
momenta.

Definition 1. The variables(Xj , xj ) j = 1, . . . , n on a 2n-dimensional symplectic manifold
form a Weyl canonical systemif they possess the Poisson brackets

{Xj,Xk} = {xj , xk} = 0 {Xj, xk} = −iXjxkδjk j, k = 1, . . . , n (2.1)

or, equivalently, the symplectic formω is expressed asω = i
∑
j d lnXj ∧ d lnxj =

d(i
∑
j lnXjd lnxj ).

Then-particle (An−1) trigonometric Ruijsenaars model [4] is formulated in terms of the
Weyl canonical system(Tj , tj ) where

∣∣tj ∣∣ = 1, Tj ∈ R (j = 1, 2, . . . , n). The Hamiltonians
Hi are defined as

Hi =
∑

J⊂{1,...,n}
|J |=i

 ∏
j∈J

k∈{1,...,n}\J

vjk

 (∏
j∈J

Tj

)
i = 1, . . . , n (2.2)

where

vjk = `− 1
2 tj − `

1
2 tk

tj − tk
` ∈ (1,∞) . (2.3)

Proposition 1 ([4, 7]).The HamiltoniansHj Poisson commute:

{Hj,Hk} = 0 j, k = 1, . . . , n. (2.4)

Define the Lax matrix (L operator) by the formula

L(u) = D(u)E(u) (2.5)

where

Djk = (`− 1)(1 − `nu)

2`(n+1)/2(1 − u)

(∏
i 6=j
vji

)
Tjδjk (2.6)

Ejk = 1 + `nu

1 − `nu
− tj + `tk

tj − `tk
. (2.7)

Proposition 2 ([4]). The characteristic polynomial of the matrixL(u), equation (2.5),
generates the Hamiltonians (2.2)

(−1)n`n(n−1)/2(1 − `nu)(1 − u)n det(z − L(u))

=
n∑
k=0

(−1)k`[(n−1)/2]k(1 − `ku)(1 − u)k(1 − `nu)n−kHn−kzk (2.8)

where we assumeH0 ≡ 1.
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In the three-particle (A2) case which we consider hereafter we have, respectively,

H1 = v12v13T1 + v21v23T2 + v31v32T3 (2.9a)

H2 = v13v23T1T2 + v12v32T1T3 + v21v31T2T3 (2.9b)

H3 = T1T2T3 (2.9c)

D = (`− 1)(1 − `3u)

2`2(1 − u)
diag{v12v13T1, v21v23T2, v31v32T3} (2.10)

Ejk = 1 + `3u

1 − `3u
− tj + `tk

tj − `tk
(2.11)

and

`3(1 − u)2 det(z − L(u)) = z3`3(1 − u)2 − z2`2(1 − u)(1 − `2u)H1

+z`(1 − `u)(1 − `3u)H2 − (1 − `3u)2H3. (2.12)

To find a SoV for the Ruijsenaars system we use the recipe discussed in section 1 and
choose for the separated coordinatesyj the poles uponu of the Baker–Akhiezer function
ψ(u) (an eigenvector ofL(u)) normalized by the condition that its third componentψ3(u)

be a constant. The canonically conjugated (in the Weyl sense) variablesYj are chosen as the
eigenvalues ofL(yj ). For a detailed discussion of the BA function recipe see [1], though
the construction described below is quite self-contained.

Define two functionsA1(u) andA2(u) by the formulae

Ak(u) := Lkk − L3kLk,3−k
L3,3−k

= Tkαk(u) k = 1, 2 (2.13)

αk(u) := (1 − `3u)(`t3u− t3−k)(tk − `t3)

`(1 − u)(`2t3u− t3−k)(`tk − t3)
k = 1, 2 . (2.14)

The separated variablesyj are defined by the formula

A1(y) = A2(y). (2.15)

It is easy to see that (2.15) has three solutions, one of which (y = `−3) we ignore since
it is a constant. The remaining two roots we denotey1 and y2. From the easily verified
invariance ofα1(u)/α2(u) under the transformationu 7→ u−1t1t2t

−2
3 `− 3

2 it follows that

y1y2 = t1t2

t23`
3
. (2.16)

The conjugated variablesYj are defined as

Yj = A1(yj ) = A2(yj ) j = 1, 2. (2.17)

Equivalently, the four variablesY1, Y2, y1, y2 are defined through four equations

Yj = Tkαk(yj ) j, k ∈ {1, 2}. (2.18)

Theorem 1.The variablesYj , yj satisfy the separated equations

Y 3
j `

3(1 − yj )
2 − Y 2

j `
2(1 − yj )(1 − `2yj )H1 + Yj`(1 − `yj )(1 − `3yj )H2

−(1 − `3yj )
2H3 = 0 j = 1, 2 (2.19)

which, by virtue of (2.12), imply that det(Yj − L(yj )) = 0.
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Proof. Substitute in (2.19) the expressions (2.9) forHj and split the left-hand side of (2.19)
into two terms

T3Z1 + YjZ2 = 0 (2.20)

where

Z1 = −(1 − yj )(1 − `2yj )`
2v31v32Y

2
j + (1 − `yj )(1 − `3yj )`(v12v32T1Yj + v21v31T2Yj )

−(1 − `3yj )
2T1T2 (2.21a)

Z2 = (1 − yj )
2`3Y 2

j − (1 − yj )(1 − `2yj )`
2(v12v13T1Yj + v21v23T2Yj )

+(1 − `yj )(1 − `3yj )v13v23T1T2. (2.21b)

To prove (2.19) it is sufficient to show thatZ1 = Z2 = 0. ReplacingYj in (2.21) by
T1α1(yj ) or T2α2(yj ) in such a way that the factorT1T2 could be cancelled fromZ1,2 we
obtain thatZ1,2 = 0 follows from two algebraic identities forα1,2

−(1 − y)(1 − `2y)`2v31v32α1(y)α2(y)

+(1 − `y)(1 − `3y)`
(
v12v32α2(y)+ v21v31α1(y)

) − (1 − `3y)2 = 0 (2.22a)

(1 − y)2`3α1(y)α2(y)− (1 − y)(1 − `2y)`2
(
v12v13α2(y)+ v21v23α1(y)

)
+(1 − `y)(1 − `3y)`v13v23 = 0 (2.22b)

which are verified directly. �
The third pair of separated variables is defined as

x := t3 X := T1T2T3 (2.23)

the corresponding separated equation being

X −H3 = 0. (2.24)

Theorem 2.The variables(X, Y1, Y2; x, y1, y2) form a Weyl canonical system in the sense
of definition 1.

Proof. Let us introduce new variables

t+ = t
1/2
1 t

1/2
2 t−1

3 t− = t
1/2
1 t

−1/2
2 (2.25a)

T+ = T1T2 T− = T1T
−1

2 (2.25b)

and also

y+ = y
1/2
1 y

1/2
2 y− = y

1/2
1 y

−1/2
2 (2.26a)

Y+ = Y1Y2 Y− = Y1Y
−1
2 . (2.26b)

Obviously,(X, T−, T+; x, t−, t+) is also a Weyl canonical system. Note that

y+ = t+`− 3
2 (2.27)

because of (2.16). Note also that from (2.14) it follows thatY±, y± depend only onT±, t±
and do not containX, x.

It remains for us to show that the transformation from(T−, T+; t−, t+) to (Y−, Y+;
y−, y+) is canonical, that is(Y−, Y+; y−, y+) is again a Weyl canonical system. To this
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end, it suffices to construct the generating functionF(Y+, y−; t+, t−) of the canonical
transformation such that [8]

i ln T± = t±
∂F

∂t±
i ln Y− = −y−

∂F

∂y−
i ln y+ = Y+

∂F

∂Y+
. (2.28)

and d(F − i ln Y+ ln y+) = i(ln T−d ln t− + ln T+d ln t+) − i(lnY−d lny− + lnY+d lny+).
Recalling the definition of the Euler dilogarithm [9]

Li 2(z) := −
∫ z

0

dt

t
ln(1 − t) =

∞∑
k=1

zk

k2
(2.29)

and introducing the notation

L(ν; x, y) := Li 2(νxy)+ Li 2(νxy
−1)+ Li 2(νx

−1y)+ Li 2(νx
−1y−1) (2.30)

we defineF := i ln Y+ ln(`− 3
2 t+)+ F̃ :

F̃ := i
(L(`− 1

2 ; y−, t−)+ L(`−1; t+, t−)− L(`− 3
2 ; t+, y−)− Li 2(t

2
−)− Li 2(t

−2
− )

)
. (2.31)

It is a matter of direct calculation to verify, using equations (2.18) and (2.27), thatF

satisfies (2.28). �

The identities (2.19) and (2.24) and canonicity of the variables(X, Y1, Y2; x, y1, y2)

established above provide, by definition [1], a SoV for theA2 Ruijsenaars system.

3. Quantization

Here we collect the standard facts concerning the quantumn-particle (An−1) Ruijsenaars
model [4, 7] and the corresponding Macdonald polynomials [5, 6].

Throughout the paperZ stands for the set of integers, the notationZ>0 andZ60 being
self-evident.

The quantum Ruijsenaars model is described in terms of the multiplication and shift
operators,tj andTj (j = 1, . . . , n) respectively, acting on the functions oftj

(tj f )(t) := tj f (t) (Tjf )(t) := f (. . . , qtj , . . .) (3.1)

(we do not make distinction between variables and operatorstj ). Hereq is the quantum
deformation parameter related to the Planck constant ¯h > 0 as

q = e−h̄ q ∈ (0, 1). (3.2)

The operatorsTj , tj satisfy the Weyl commutation relations

[Tj , Tk] = [tj , tk] = 0 Tj tk =
{
qtkTj j = k

tkTj j 6= k
(3.3)

which produce the Poisson brackets (2.1) in the classical limit ¯h → 0 by the standard
correspondence rule [, ] = −ih̄{, } + O(h̄2).

The commuting quantum HamiltoniansHj

[Hj,Hk] = 0 j, k = 1, . . . , n (3.4)

are given by the same formulae (2.2) as in the classical case with the fixed operator ordering
(Tj to the right). We assume that

` = q−g = egh̄ g > 0 ` ∈ (1,∞) (3.5)
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(note that both in the classical and non-relativistic limits ¯h → 0, q = e−h̄ → 1 but in the
classical limitg → ∞, ` = constant whereas in the non-relativistic limitg = constant,
` → 1).

The operatorsHk leave invariant the space Sym(t1, . . . , tn) of symmetric Laurent
polynomials in variablestj . A basis in Sym(t1, . . . , tn) is given by the monomial symmetric
functionsmλ labelled by the sequencesλ = {λ1 6 λ2 6 · · · 6 λn} of integersλj ∈ Z
(dominant weights) and expressed asmλ = ∑

t
ν1
1 · · · tνnn where the sum is taken over all

distinct permutationsν of λ.
Denote|λ| ≡ ∑n

j=1 λj . The dominant order on the dominant weightsλ is defined as

λ′ � λ ⇐⇒
{∣∣λ′∣∣ = |λ| ;

n∑
j=k

λ′
j 6

n∑
j=k

λj , k = 2, . . . , n

}
. (3.6)

The Macdonald polynomialsP (`;q)λ ∈ Sym(t1, . . . , tn) are uniquely defined as joint
eigenvectors ofHk in Sym(t1, . . . , tn)

HkP
(`;q)
λ = hkP

(`;q)
λ (3.7)

labelled by the dominant weightλ and normalized by the condition

P
(`;q)
λ =

∑
λ′�λ

κλ′mλ′ κλ = 1. (3.8)

The corresponding eigenvalueshk are

hk =
∑

j1<···<jk
µj1 · · ·µjk µj = qλj `(n+1)/2−j . (3.9)

Note that our parameters̀and t used in [5, 6] relate as̀ = t−1.
The polynomialsP (`;q)λ are orthogonal

1

(2π i)n

∮
|t1|=1

dt1
t1

· · ·
∮

|tn|=1

dtn
tn
P̄
(`;q)
λ (t)P

(`;q)
λ′ (t)1(t) = 0 λ 6= λ′ (3.10)

with respect to the weight

1(t1, . . . , tn) =
∏
j 6=k

(tj t
−1
k ; q)∞

(`−1tj t
−1
k ; q)∞

(3.11)

(see equation (A.2) for the notation).
In the limit h̄ → 0, g = constant the appropriate linear combinations ofHk produce

the Hamiltonians of the non-relativistic Calogero–Sutherland model, and the Macdonald
polynomials go over into the Jack polynomials, see [2].

In the present paper we consider only the simplest non-trivial casen = 3.
With the HamiltoniansHk being given by (2.9), equations (3.9) respectively produce

h1 = `qλ1 + qλ2 + `−1qλ3 h2 = `qλ1+λ2 + qλ1+λ3 + `−1qλ2+λ3 h3 = q |λ| (3.12)

for their eigenvalues labelled by the ordered triplets{λ1 6 λ2 6 λ3} ∈ Z3.
For instance

m000 = 1 m001 = t1 + t2 + t3 m011 = t1t2 + t1t3 + t2t3

m002 = t21 + t22 + t23 m111 = t1t2t3

m012 = t1t
2
2 + t21 t2 + t1t

2
3 + t21 t3 + t2t

2
3 + t22 t3 m112 = t21 t2t3 + t1t

2
2 t3 + t1t2t

2
3

m022 = t21 t
2
2 + t21 t

2
3 + t22 t

2
3 m003 = t31 + t32 + t33
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P
(`;q)
000 = m000 P

(`;q)
001 = m001 P

(`;q)
011 = m011

P
(`;q)
002 = m002 + (1 − `)(1 + q)

q − `
m011

P
(`;q)
111 = m111 P

(`;q)
012 = m012 + (1 − `)(q(2 + `)+ 1 + 2`)

q − `2
m111

P
(`;q)
112 = m112 P

(`;q)
022 = m022 + (1 − `)(1 + q)

q − `
m112

P
(`;q)
003 = m003 + (1 − `)(1 + q + q2)

q2 − `
m012 + (1 − `)2(1 + q)(1 + q + q2)

(q − `)(q2 − `)
m111.

4. The operator M

We are now going to describe the integral operatorM (1.3) producing the SoV. Generally
speaking, the kernelM of M should depend on six variables:M(x, y1, y2 | t1, t2, t3).
However, by analogy with the classical case (section 2) and the non-relativistic limit [2], it
is natural to assume thatM contains twoδ-functions corresponding to the constraintsx = t3
(2.23) and, respectively, (2.16). There remains thus only one integration inM. Again by
analogy with the previously studied cases, the kernelM is most conveniently described in
terms of the variablest± (2.25a) andy± (2.26a).

So, let us introduce the operatorM

M : 9(t1, t2, t3) → 8(x, y1, y2)

= 1

2π i

∫
0
t+ ,y−
g,2g

dt−
t−

M(
(y1y2)

1
2 , (y1/y2)

1
2
∣∣ t−)

9
(
`

3
2x(y1y2)

1
2 t−, `

3
2x(y1y2)

1
2 t−1

− , x
)

(4.1)

with the kernel

M(y+, y− | t−) =
(1 − q)(q; q)2∞(t2−, t−2

− ; q)∞ Lq
(
`− 3

2 ; y−, y+`
3
2

)
2Bq(g, 2g)Lq

(
`− 1

2 ; y−, t−
)

Lq
(
`−1; t−, y+`

3
2

) (4.2)

where the notation (A.7) and (B.2) is used. For the definition of the cycle0
t+,y−
g,2g which

depends ong, y1,2 see equations (B.4) and (A.16).

Remark. In the classical limit, asq → 1, ` = constant, using (A.20) and lnLq(ν; x, y) ∼
−h̄−1L(ν; x, y) one obtains that the asymptotics lnM ∼ −ih̄−1F̃ of the kernelM is
determined by the regular part̃F (2.31) of the generating function of the canonical
transformation producing classical SoV. As for the non-relativistic limit, ¯h → 0, g =
constant, the easiest way to reproduce the results of [2] is to compare the action of the
operatorM and its non-relativistic analogue on polynomials, see theorem 4.

Now we are in a position to formulate our main result.

Theorem 3.The operatorM, equation (4.1), transforms anyA2 Macdonald polynomial
P
(`;q)
λ (t1, t2, t3) into the product

M : P (`;q)λ (t1, t2, t3) → cλx
|λ|S(`;q)λ (y1)S

(`;q)
λ (y2) (4.3)
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of functions of one variable only, where the Laurent polynomialsS
(`;q)
λ1λ2λ3

S
(`;q)
λ (y) =

λ3∑
k=λ1

χ
(`;q)
λ,k yk (4.4)

are expressed in terms of the basic hypergeometric series (A.9)

S
(`;q)
λ (y) = yλ1(y; q)1−3g 3φ2

[
`3q1−λ31, `2q1−λ21, `q

`2q1−λ31, `q1−λ21
; q, y

]
(4.5)

whereλjk ≡ λj − λk. The coefficientsχ(`;q)λ,k are given by

χ
(`;q)
λ,k = (q`3)k−λ1

(q−1`−3; q)k−λ1

(q; q)k−λ1

4φ3

[
qλ1−k, `3q1−λ31, `2q1−λ21, `q

`3qλ1−k+2, `2q1−λ31, `q1−λ21
; q, q

]
. (4.6)

The normalization coefficientcλ equals

cλ = `4λ1−λ2
(`−2; q)λ31(`

−2; q)λ32(`
−1; q)λ21

(`−3; q)λ31(`
−1; q)λ32(`

−2; q)λ21

. (4.7)

The proof of the above result will occupy the rest of this section and a part of the
next one. Our proof parallels the similar one for the non-relativistic Calogero–Sutherland
model [2].

We begin with proving the factorization (4.3) ofMP(`;q)λ . The first step is to show that
the imageMP(`;q)λ satisfies certainq-difference equations inx, y1, y2. Let us introduce the
operatorsYj (j = 1, 2) acting on functions ofyk as (cf (3.1))

(Yjf )(y) = f (. . . , qyj , . . .). (4.8)

Using y± = (y1y
±1
2 )1/2, equation (2.26a), one can also write

(Y1f )(y+, y−) = f (q
1
2y+, q

1
2y−) (Y2f )(y+, y−) = f (q

1
2y+, q− 1

2y−). (4.9)

Similarly

(T1f )(t+, t−) = f (q
1
2 t+, q

1
2 t−) (T2f )(t+, t−) = f (q

1
2 t+, q− 1

2 t−). (4.10)

We define also the operatorX asX(f )(x) = f (qx).
Let us introduce the operator expressionD

D(u, z; H1,H2,H3) := (1 − qu)(1 − q2u)`3z3 − (1 − qu)(1 − q2`2u)`2z2H1

+(1 − q`u)(1 − q2`3u)`zH2 − (1 − q`3u)(1 − q2`3u)H3 (4.11)

which can be considered as a quantum generalization of the characteristic polynomial (2.12).
The ordering is important in (4.11) since we are going to replace the parametersu, z, Hj

by non-commuting operators.

Proposition 3.The operatorM (4.1) satisfies the equations

XM −MH3 = 0 (4.12)

D(yj , Yj ;MH1,MH2,MH3) = 0 j = 1, 2 (4.13)

whereH1,2,3 are the quantum Hamiltonians (2.9).
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Proof. Although the equality (4.12) can easily be derived from the fact thatM respects
the constraintx = t3, or directly from (4.1), we shall instead proceed in a more methodical
fashion, allowing us to prove both (4.12) and (4.13) in the same way. Let us first rewrite
the operator identities (4.12) and (4.13) forM as algebraic identities for the kernelM (4.2).

We define the Lagrange adjoint HamiltoniansH ∗
k as

H ∗
1 = T −1

1 v12v13 + T −1
2 v21v23 + T −1

3 v31v32 (4.14a)

H ∗
2 = T −1

1 T −1
2 v13v23 + T −1

1 T −1
3 v12v32 + T −1

2 T −1
3 v21v31 (4.14b)

H ∗
3 = T −1

1 T −1
2 T −1

3 (4.14c)

1

2π i

∮
dt

t
f (t)(Hg)(t) = 1

2π i

∮
dt

t
(H ∗f )(t)g(t). (4.15)

In particular,T ∗
j = T −1

j . ConsideringM in (4.12) and (4.13) as an integral operator, we
can use integration by parts and switchHk to the kernelM replacing them byH ∗

k according
to (4.15) which results in theq-difference equations forM:

(X −H ∗
3 )M = 0 (4.16)

D(yj , Yj ;H ∗
1 , H

∗
2 , H

∗
3 )M = 0 j = 1, 2. (4.17)

While equation (4.16) is obvious, equation (4.17) needs more consideration. Note that,
by virtue of (4.9) and (4.10), the action ofD on M(y+, y− | t−) is well defined. Note also
that equations (4.16) and (4.17) are respectively the quantum counterparts of the classical
separated equations (2.24) and (2.19).

The next step is to notice that the kernelM (4.2) satisfies the four first-orderq-difference
equations

YjTkM = α̌k(yj )M j, k ∈ {1, 2} (4.18)

where (cf the classical equation (2.14))

α̌k(y) = (1 − q`3y)(tk − `t3)(`t3y − t3−k)(qtk − t3−k)
`(1 − y)(q`tk − t3)(q`2t3y − t3−k)(tk − t3−k)

k = 1, 2 (4.19)

which are verified directly from (4.2) using relations (A.4). Note that equation (4.18) is the
quantum counterpart of (2.17)–(2.18).

Remark. It is easy to verify that the system (4.18) is holonomic, that is the operators
α̌k(yj )

−1YjTk commute, providedyj and tk are bound by (2.16).

We now proceed with the derivation of the third-orderq-difference relations inyj ,
equation (4.17), forM from the first-order relations (4.18). The proof parallels that of
theorem 1 for the classical case. Let us write down the equations (4.17) explicitly:[
(1 − qyj )(1 − q2yj )`

3Y 3
j − (1 − qyj )(1 − q2`2yj )`

2Y 2
j H

∗
1 + (1 − q`yj )(1 − q2`3yj )`YjH

∗
2

−(1 − q`3yj )(1 − q2`3yj )H
∗
3

]M = 0 (4.20)

then substitute in (4.20) the expressions (4.14) forH ∗
j and split the left-hand side of (4.20)

into two terms

T −1
3 Ž1 + Yj Ž2 = 0 (4.21)
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where

Ž1 = [−(1 − qyj )(1 − q2`2yj )`
2Y 2
j v31v32 − (1 − q`3yj )(1 − q2`3yj )T

−1
1 T −1

2

+(1 − q`yj )(1 − q2`3yj )`Yj (T
−1

1 v12v32 + T −1
2 v21v31)

]M (4.22a)

Ž2 = [
(1 − yj )(1 − qyj )`

3Y 2
j + (1 − `yj )(1 − q`3yj )`T

−1
1 T −1

2 v13v23

−(1 − yj )(1 − q`2yj )`
2Yj (T

−1
1 v12v13 + T −1

2 v21v23)
]M. (4.22b)

Introducing the notation

α̌12(y) ≡ α̌1(qy)
∣∣
t2:=qt2α̌2(y) = α̌2(qy)

∣∣
t1:=qt1α̌1(y) (4.23)

v̌jk = `− 1
2 tj − q`

1
2 tk

tj − qtk
(4.24)

and noting that

Tkvjk = v̌jkTk vjkTj = Tj v̌jk (4.25)

it is easy to verify the algebraic identities forα̌1,2

(1 − qy)(1 − q2`2y)`2v̌31v̌32α̌12(y)− (1 − q`3y)(1 − q2`3y)

+(1 − q`y)(1 − q2`3y)`
(
v̌12v̌32α̌2(y)+ v̌21v̌31α̌1(y)

) = 0 (4.26a)

(1 − y)(1 − qy)`3α̌12(y)+ (1 − `y)(1 − q`3y)`v13v23

−(1 − y)(1 − q`2y)`2
(
v̌12v13α̌2(y)+ v̌21v23α̌1(y)

) = 0. (4.26b)

Now we insertTkT
−1
k in appropriate places in (4.22) in such a way thatT −1

1 T −1
2 can be

carried out to the left of [· · ·]. Then we push the productsYT to the right using (4.25) until
they hit M, so that (4.18) can be applied. The equalitiesŽ1 = 0, Ž2 = 0 and therefore
(4.20) and (4.13) then follow immediately from (4.26). �
Proposition 4.The function

(
MP

(`;q)
λ

)
(x, y1, y2) satisfies the q-difference equations

(separated equations)

(X − h3)MP
(`;q)
λ = 0 (4.27)

D(yj , Yj ;h1, h2, h3)MP
(`;q)
λ = 0 j = 1, 2. (4.28)

Proof. Apply the operator expressions (4.12) and (4.13) to the functionP
(`;q)
λ . Using

the operator ordering convention and the fact that Macdonald polynomialsP
(`;q)
λ are the

eigenfunctions of the HamiltoniansHj (3.7) one replacesHj by hj . Sincehj are just
numbers, the operatorM can then be applied directly toP (`;q)λ which results in (4.27) and
(4.28). �

In order to derive the factorization (4.3) ofMP(`;q)λ we need more specific information
about howM acts on the symmetric polynomials from Sym(t1, t2, t3). Note that solutions
to (4.18), as to anyq-difference equations, are defined only up to a factor invariant under
q-shifts (quasi-constant). Our choice (4.2) of the kernelM corresponds to a particular
choice of the quasi-constant which is crucial for the results given below.

Since the kernelM (4.2) is a particular case, equation (B.8), of the kernelMαβ ,
equation (B.7), we can make use of the results obtained forMαβ in appendix B.
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Let us define a few polynomial spaces. Let Sym(t1, t2, t3) be the space of
Laurent polynomials symmetric w.r.t. permutations of the three variablest1, t2, t3. A
basis in Sym(t1, t2, t3) is given by mλ or P (`;q)λ . Let Sym(t1, t2; t3) be the space
of Laurent polynomials of the same three variables, symmetric only w.r.t.t1 ↔ t2.
Obviously, Sym(t1, t2; t3) ⊃ Sym(t1, t2, t3). Though the Macdonald polynomials belong
to Sym(t1, t2, t3) it is convenient to defineM on a larger space Sym(t1, t2; t3).

Let Ref(t−; t+; t3) be the space of Laurent polynomials int±, t3 which are reflexive
in t− (invariant w.r.t. t− → t−1

− ) and even int± (invariant w.r.t.(t−, t+) → (−t−,−t+).
Note that the change of variables(t1, t2, t3) → (t−, t+, t3), see equation (2.25a), provides
an isomorphism Sym(t1, t2; t3) ' Ref(t−; t+; t3).

The spaces Sym(y1, y2; x) ' Ref(y−; y+; x) are similarly defined.

Proposition 5.

M : Sym(t1, t2; t3) → Sym(y1, y2; x).
In particular, the image of a Macdonald polynomialP (`;q)λ ∈ Sym(t1, t2, t3) also lies in
Sym(y1, y2; x).
Proof. Proposition 13 from appendix B implies thatM : Ref(t−; t+; t3) → Ref(y−; y+; x).
Using the isomorphisms Sym(t1, t2; t3) ' Ref(t−; t+; t3) and Sym(y1, y2; x) '
Ref(y−; y+; x) we conclude the proof. �

Now everything is ready for us to prove the main statement of theorem 3.

Proposition 6.The operatorM transforms any Macdonald polynomialP (`;q)λ into the
product (4.3).

Proof. We have already established thatMP(`;q)λ is a Laurent polynomial (proposition
5) satisfying theq-difference equations (4.27) and (4.28). The factorization (4.3) follows
from the fact thatxh3 and S(`;q)λ (y) are respectively the unique, up to a constant factor,
Laurent-polynomial solutions, of theq-difference equations(X − h3)f (x) = 0 and
D(y, Y ;h1, h2, h3)f (y) = 0. The first statement is obvious, as for the second one, see
proposition 12. �

Although for theorem 3 we have used only the polynomiality ofMP
(`;q)
λ , in fact,

the action ofM on Sym(t1, t2; t3) can be described in much more detail. Namely, taking
equation (B.13) from appendix B, making the substitutions (B.8) and performing the changes
of variables (2.25a) and (2.26a) one obtains the following result.

Theorem 4.Consider the basis in Sym(t1, t2; t3)
pjkν := t

j−2k
3 tk1 t

k
2(`

−1t1t
−1
3 , `−1t2t

−1
3 ; q)ν j, k ∈ Z ν ∈ Z>0 (4.29)

and in Sym(y1, y2; x)
p̃jkν := xjyk1y

k
2(y1, y2; q)ν j, k ∈ Z ν ∈ Z>0 (4.30)

respectively. The operatorM acts onpjkν as follows:

M : pjkν → `3k (`
−2; q)ν

(`−3; q)ν p̃jkν . (4.31)

Postponing to section 5 the proof of equations (4.5) and (4.6), we can now prove the
final statement of theorem 3.

Proposition 7.The normalization coefficientcλ in (4.3) is given by (4.7).
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Proof. In this case, it is convenient to make use of the isomorphisms described above and
to think ofM as acting from Ref(t−; t+; t3) into Ref(y−; y+; x). Comparing the asymptotics
of the monomial symmetric functionsmλ

mλ1λ2λ3 ∼ t
λ3−λ1− t

λ3+λ1+ t
λ1+λ2+λ3
3 t− → ∞

and of the polynomialpjkν (4.29)

pjkν ≡ t
j

3 t
2k
+ (`

−1t+t−, `−1t+t−1
− )ν

∼ (−1)νqν(ν−1)/2`−ν tj3 t
2k+ν
+ tν− t− → ∞

we conclude that the transition matrix between the basesmλ andpjkν is triangular

mλ = (−1)λ31q−λ31(λ31−1)/2`λ31p|λ|,λ1,λ31 +
∑
ν<λ31

∑
j,k

(· · ·)pjkν. (4.32)

Given the mutual triangularity, equation (3.8), of the basesP
(`;q)
λ andmλ, it means that

the expansion ofP (`;q)λ in pjkν has the same structure as (4.32). Then using equation (4.31)
and the asymptotics of̃pjkν , equation (4.30),

p̃jkν ≡ xjy2k
+ (y+y−, y+y−1

− )ν ∼ (−1)νqν(ν−1)/2xjy2k+ν
+ yν− y− → ∞

we obtain

MP
(`;q)
λ = (−1)λ31q−λ31(λ31−1)/2`2λ1+λ3

(`−2; q)λ31

(`−3; q)λ31

p̃|λ|,λ1,λ31 + · · ·

∼ `2λ1+λ3
(`−2; q)λ31

(`−3; q)λ31

x|λ|yλ3+λ1+ y
λ31− y− → ∞. (4.33)

On the other hand, equation (4.4) implies that

cλ x
|λ| S(`;q)λ (y+y−) S

(`;q)
λ (y+y−1

− ) ∼ cλ χ
(`;q)
λ,λ1

χ
(`;q)
λ,λ3

x |λ|yλ3+λ1+ y
λ3−λ1−

whence

cλ χ
(`;q)
λ,λ1

χ
(`;q)
λ,λ3

= (`−2; q)λ3−λ1

(`−3; q)λ3−λ1

`λ3+2λ1. (4.34)

It only remains for us to use equations (5.14) proved in section 5, and obtain
equation (4.7). �

Compared with [2] our equation (4.7) for the normalization coefficientscλ is new, and
its non-relativistic analogue

cλ = (2g)λ31(2g)λ32(g)λ21

(3g)λ31(g)λ32(2g)λ21

(α)k ≡ α(α + 1) · · · (α + k − 1)

fills the gap in the description given in [2] of the integral representation for Jack polynomials
analogous to (4.38).

We conclude this section with a list of results concerning the inverse operatorM−1. All
the preparatory work having been done in appendix B, it only remains for us to use the
correspondence (B.8) betweenMαβ andM.

From (B.20) and (B.21) it follows thatM−1 is an integral operator

M−1 : 8(x, y1, y2) → 9(t1, t2, t3)

= 1

2π i

∫
0
t+ ,t−
−g,3g

dy−
y−

M̃
(
(t1t2)

1
2

t3
,

(
t1

t2

) 1
2

∣∣∣∣ y−

)
8

(
t3,
`− 3

2 (t1t2)
1
2y−

t3
,
`− 3

2 (t1t2)
1
2

t3y−

)
(4.35)
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with the kernel

M̃(t+, t− | y−) = (1 − q)(q; q)2∞(y2
−, y

−2
− ; q)∞ Lq

(
`−1; t−, t+

)
2Bq(−g, 3g)Lq

(
`

1
2 ; y−, t−

)
Lq

(
`− 3

2 ; y−, t+
) . (4.36)

Reversing equation (4.31) one obtains the formula for the action ofM−1 on the basis̃pjkν

M−1 : p̃jkν → `−3k (`
−3; q)ν

(`−2; q)ν pjkν. (4.37)

Reversing equation (4.3) provides a new integral representation ofA2 Macdonald
polynomials in terms of the Laurent polynomialsS(`;q)λ (y), equation (4.5),

M−1 : cλx
|λ|S(`;q)λ (y1)S

(`;q)
λ (y2) → P

(`;q)
λ (t1, t2, t3). (4.38)

Finally, from propositions 14 and 15 it follows that for positive integerg the operator
M−1 turns into aq-difference operator of orderg:

M−1 : 8(x, y1, y2) →
g∑
k=1

ξk

(
(t1t2)

1
2

t3
,

(
t1

t2

) 1
2
)
8

(
t3, q

g+k t1
t3
, q2g−k t2

t3

)
(4.39)

whereξk(r, s) is given by (B.15). The result is not surprising in view of the similar result
for the non-relativistic case [2] whereM−1 becomes a differential operator of orderg for
g ∈ Z>0. In [2] this result was derived using a representation ofM−1 in terms of the
fractional differential operator. In the relativistic case it is also possible to relateM−1 with
a sort of fractionalq-difference operator. We intend to tackle this subject in a separate
paper.

5. The separated equation

In this section are collected the results concerning the Laurent polynomialsS
(`;q)
λ (y) and

the correspondingq-difference equations. Since all the results are easy to generalize from
n = 3 to arbitraryn, we give them in the most general form.

Conjecture 1.The correct generalization of equation (4.5) forS(`;q)λ (y) for any n is given
by

S
(`;q)
λ (y) = yλ1(y; q)1−ng nφn−1

[
a1, . . . , an

b1, . . . , bn−1
; q, y

]
(5.1)

where

aj = `n−j+1qλ1−λn−j+1+1 bj = aj`
−1. (5.2)

Proposition 8.S(`;q)λ (y) is a Laurent polynomial iny of the form

S
(`;q)
λ (y) =

λn∑
k=λ1

χ
(`;q)
λ,k yk. (5.3)

Proof. Observe, first, that ifa = bqν for some positive integerν then

(a; q)k
(b; q)k = (bqk; q)ν

(b; q)ν (5.4)



Separation of variables for the A2 Ruijsenaars model 2793

is a polynomial inqk of degreeν whose coefficients are rational functions inb andq. As
a consequence, ifaj+1 = bjq

νj then

PN(q
k) ≡ (a2; q)k · · · (an; q)k

(b1; q)k · · · (bn−1; q)k = (b1q
k; q)ν1 · · · (bn−1q

k; q)νn−1

(b1; q)ν1 · · · (bn−1; q)νn−1

(5.5)

is a polynomial inqk of degreeN = ν1 + · · · + νn−1.
In our case,νj = λn−j+1 − λn−j , N = λn − λ1 by virtue of (5.2), and from (5.1) and

(A.9) one obtains

nφn−1

[
a1, . . . , an

b1, . . . , bn−1
; q, y

]
=

∞∑
k=0

(a1; q)k
(q; q)k y

kPN(q
k) (5.6)

wherePN(qk) is given by (5.5). It now remains for us to apply the following lemma.

Lemma 1.Let PN(y) be a polynomial iny of degree6 N . Then

∞∑
k=0

(a; q)k
(q; q)k y

kPN(q
k) = QN(y)

(aqNy; q)∞
(y; q)∞ (5.7)

whereQN(y) is a polynomial iny of degree6 N .

Proof. It is sufficient to consider the polynomialsPN(qk) = (qk−ν+1; q)ν for ν =
0, 1, . . . , N forming a basis in the polynomial ring. Then

∞∑
k=0

(a; q)k
(q; q)k y

k(qk−ν+1; q)ν =
∞∑
k=ν

[· · ·] =
∞∑
k=ν

(a; q)k
(q; q)k−ν y

k

=
∞∑
k=0

(a; q)k+ν
(q; q)k yk+ν = (a; q)νyν

∞∑
k=0

(aqν; q)k
(q; q)k yk. (5.8)

Using equation (A.11) and the identity(aqν; q)∞ = (aqν; q)N−ν(aqN ; q)∞ one finally
obtains expression (5.7) whereQN(y) = (a; q)νyν(aqνy; q)N−ν . �

Applying the above lemma to the case of the polynomialPN(q
k) given by (5.6) and

a = a1 = `nqλ1−λn+1 we finally obtain thaty−λ1S
(`;q)
λ (y) is a polynomial of degree6 λn−λ1.

�

Proposition 9.The coefficientsχ(`;q)λ,k in the expansion (5.3) are given by

χ
(`;q)
λ,k = (

q`n
)k−λ1 (q

−1`−n; q)k−λ1

(q; q)k−λ1

n+1φn

[
qλ1−k, a1, . . . , an

qλ1−k+2`n, b1, . . . , bn−1
; q, q

]
. (5.9)

In particular, forn = 3, equation (5.9) produces (4.6).

Proof. We know already thatS(`;q)λ (y) is a Laurent polynomial and is thus defined for any
y ∈ C \ {0,∞}. Suppose for a while that|y| < 1. Then both factors(y; q)1−ng and nφn−1

in (5.1) are given by the convergent series (A.11) and (A.9), respectively. Multiplying the
two power series iny we observe that the coefficients atyk is expressed in terms ofn+1φn
series:

S
(`;q)
λ (y) = yλ1

∞∑
k=0

(
q`n

)k (q−1`−N ; q)k
(q; q)k n+1φn

[
q−k, a1, . . . , an

q−k+2`n, b1, . . . , bn−1
; q, q

]
yk. (5.10)
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In fact, the sum in (5.10) is finite:
∑λn1

k=0. To see this, use [10, equation (1.9.11)]: let
ν, k1, . . . , kn ∈ Z>0, then

n+1φn

[
q−ν, b1q

k1, . . . , bnq
kn

b1, . . . , bn
; q, q

]
= 0 (5.11)

for ν > k1 + · · · + kn. Substituting

ν = k bn = q2−k`n kn = λ1 − λn + k − 1

bj = `n−j qλ1−λn−j+1+1 kj = λn−j+1 − λn−j j = 1, . . . , n− 1 ,

we obtain that

n+1φn

[
q−k, a1, . . . , an

q2−k`n, b1, . . . , bn−1
; q, q

]
= 0

for k > λn−λ1 + 1, hence the sum in (5.10) is finite:
∑λn1

k=0. The coefficient atyk in (5.10)
produces equation (5.9). �

For the sake of reference we present a short list of polynomialsS
(`;q)
λ (y) in the n = 3

case:

S
(`;q)
000 = 1 S

(`;q)
001 = 1 + `2y

`+ 1
S
(`;q)
011 = 1 + ` (`+ 1) y

S
(`;q)
002 = 1 + `2(q`+ `− q − 1)y

`2 − q
+ (`− q)`4y2

(`2 − q)(`+ 1)

S
(`;q)
012 = 1 + (`3 + `2q + `2 − `q − `− q)`y

`2 − q
+ `3y2

S
(`;q)
022 = 1 + (`2 − 1)(q + 1)`y

`− q
+ (`2 − q)(`+ 1)`2y2

`− q

S
(`;q)
003 = 1 + (1 + q + q2)(`− 1)`2y

`2 − q2
+ (1 + q + q2)(`− 1)`4y2

(`+ q)(`2 − q)
+ (`− q2)`6y3

(`+ 1)(`+ q)(`2 − q)

S
(`;q)
013 = 1 + (`3 + q2`2 + `2q + `2 − q2`− `q − `− q2)`y

`2 − q2

+ (q`
3 + `3 + `2q2 + `2q + `2 − q3`− `q2 − `q − q3 − q2)(`− 1)`3y2

(`2 − q)(`2 − q2)

+ (`− q)`5y3

`2 − q

S
(`;q)
023 = 1 + (q`3 + `3 + `2q2 + `2q + `2 − q3`− q2`− `q − q3 − q2)(`− 1)`y

(`− q)2(`+ q)

+ (`
3 + `2q2 + `2q + `2 − q2`− `q − `− q2)(`2 − q)`2y2

(`− q)2(`+ q)

+ (`
2 − q)`4y3

`− q



Separation of variables for the A2 Ruijsenaars model 2795

S
(`;q)
033 = 1 + (1 + q + q2)(`2 − 1)`y

`− q2
+ (1 + q + q2)(`2 − 1)(`2 − q)`2y2

(`− q)(`− q2)

+ (`+ 1)(`+ q)(`2 − q)`3y3

`− q2
.

Remark.It easy to give simpler expressions for someχ(`;q)λ,k such as

χ
(`;q)
λ,λ1

= 1 (5.12)

and

χ
(`;q)
λ,λn

= `|λ|−nλ1

n−1∏
j=1

(`−j ; q)λj−λ1(`
−j ; q)λn−λn−j

(`−j ; q)λj+1−λ1(`
−j ; q)λn−λn−j+1

. (5.13)

which for n = 3 produce

χ
(`;q)
λ,λ1

= 1 χ
(`;q)
λ,λ3

= `−2λ1+λ2+λ3
(`−1; q)λ32(`

−2; q)λ21

(`−2; q)λ32(`
−1; q)λ21

. (5.14)

Equation (5.12) is obvious. To obtain equation (5.13), use the summation formula
[10, equation (1.9.10)]:

n+1φn

[
q−ν, β, β1q

k1, . . . , βn−1q
kn−1

βq, β1, . . . , βn−1
; q, q

]
= (q; q)ν(β1/β; q)k1 · · · (βn−1/β; q)kn−1

(βq; q)ν(β1; q)k1 · · · (βn−1; q)kn−1

βν

(5.15)

whereν, k1, . . . , kn−1 ∈ Z>0 andν > k1 + · · · + kn−1. Substituting

ν = λn1 β = `nq1−λn1 ≡ a1

βj = `jq1−λj+1+λ1 ≡ bn−j kj = λj+1 − λj j = 1, . . . , n− 1 ,

we obtain, after a series of equivalent transformations (see [10, appendix I]),
expression (5.13).

Remark.There is also a simple formula forS(`;q)λ (`−n):

S
(`;q)
λ (`−n) = `−nλ1(`−n; q)λn1

n−1∏
j=1

(`−j ; q)λj−λ1

(`−j ; q)λj+1−λ1

(5.16)

or, for n = 3,

S
(`;q)
λ (`−3) = `−3λ1

(`−2; q)λ21(`
−3; q)λ31

(`−1; q)λ21(`
−2; q)λ31

, (5.17)

which are proved in a way similar to (5.13) using [10, equation (1.9.9)].

The polynomials S(`;q)λ (y) can also be expressed in terms of theq-Lauricella
function (A.12).

Proposition 10.The following equalities hold:

S
(`;q)
λ (y) = yλ1

(q`nqλ1ny; q)λn1∏n−1
j=1(q

λ1−λn−j+1+1`n−j ; q)λn−j+1−λn−j

×φD
[
a′; b′

1, . . . , b
′
n−1

c
; q; x1, . . . , xn−1

]
(5.18)
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whereλij ≡ λi − λj and

a′ = y c = q`nqλ1ny xj = q`n−j qλ1−λn−j b′
j = qλn−j−λn−j+1 (5.19)

for j = 1, . . . , n− 1. Another expression forS(`;q)λ (y) reads

S
(`;q)
λ (y) = yλ1(q`y; q)(1−n)g

(n−1∏
i=1

(ai; q)g
)
φD

[
y; `−1, . . . , `−1

q`y
; q; a1, . . . , an−1

]
.

(5.20)

Proof. Equation (5.18) is obtained by substituting the parameters (5.19) in Andrews’
formula (A.13) for theq-Lauricella function and comparing the result to (5.1). Note that
c/a′ ≡ a1, xj ≡ aj+1, b′

j xj ≡ bj . Similarly, substituting in (A.13) the parametersa′ = y,
c = q`y, b′

j = `−1, xj = aj (j = 1, . . . , n− 1) such thatc/a′ ≡ an, b′
j xj ≡ bj , one arrives

at (5.20). �

Corollary 1. Substituting the definition (A.12) ofφD in equation (5.18) we obtain another
explicit representation forS(`;q)λ (y):

S
(`;q)
λ (y) = yλ1

1∏n−1
j=1(q

λ1−λn−j+1+1`n−j ; q)λn−j+1−λn−j

×
λn−λn−1∑
k1=0

· · ·
λ2−λ1∑
kn−1=0

(q`nqλ1n+k1+···+kn−1y; q)λn1−k1−···−kn−1 (y; q)k1+···+kn−1

×
n−1∏
j=1

(qλn−j−λn−j+1; q)kj (q`n−j qλ1−λn−j )kj

(q; q)kj
. (5.21)

Corollary 2. It is also possible to representS(`;q)λ (y) as aq-integral (A.8):

S
(`;q)
λ (qx) = qλ1x

(q`nqλ1nqx; q)λn1∏n−1
j=1(q

λ1−λn−j+1+1`n−j ; q)λn−j+1−λn−j

× 1

Bq(x, λ1n + 1 − ng)

∫ 1

0
dq t t

x−1 (tq; q)λ1n−ng∏n−1
j=1(tq`

n−j qλ1−λn−j ; q)λn−j−λn−j+1

.

(5.22)

To obtain equation (5.22) rewrite Andrews’ formula (A.13) as aq-integral

φD

[
qα; qβ1, . . . , qβn−1

qγ
; q; x1, . . . , xn−1

]
= 1

Bq(α, γ − α)

∫ 1

0
dq t t

α−1 (tq; q)γ−α−1∏n−1
j=1(txj ; q)βj

.

(5.23)

and substitute

α = x (y = qx) γ = λ1n + 1 − ng + x

βj = λn−j − λn−j+1 xj = q`n−j qλ1−λn−j .

The rest of the results are concerned with the separatedq-difference equations for the
polynomialsS(`;q)λ (y).
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Proposition 11.The polynomialf (y) := S
(`;q)
λ (y) (5.1) satisfies theq-difference equation

n∑
k=0

(−1)k`[(n−1)/2]k(1 − qk`ky)(y; q)k (qk+1`ny; q)n−k hn−k f (qky) = 0(5.24)

where thehk are given by (3.9) and, as in the classical case (2.8), we assumeh0 ≡ 1.

Proof. Using the definitions (5.1) and (5.2), together with (3.9), it is a matter
of straightforward calculation to transform theq-difference equation (A.10) fornφn−1

into (5.24). �
In fact, the factor(1−qn`ny) can be cancelled from (5.24) which results in the formula

(−1)n`n(n−1)/2(y; q)nh0f (q
ny)

+
n−1∑
k=0

(−1)k`[(n−1)/2]k(1 − qk`ky)(y; q)k (qk+1`ny; q)n−k−1 hn−k f (qky) = 0 .

(5.25)

In the n = 3 case theq-difference equation (5.24) takes the form

D(y, Y ;h1, h2, h3)f (y) = 0

whereD is given by (4.11), or, explicitly,

(1 − qy)(1 − q2y)`3 f (q3y)− (1 − qy)(1 − q2`2y)`2h1 f (q
2y)

+(1 − q`y)(1 − q2`3y)`h2 f (qy)− (1 − q`3y)(1 − q2`3y)h3 f (y) = 0.

(5.26)

Proposition 12.Let

G(0)
n := Z ∪ 1

2Z ∪ · · · ∪ 1

n− 1
Z G(1)

n :=
{

1

n
,

2

n
, . . . ,

n− 2

n

}
.

Then, for all g > 0 except for the finite number of pointsg ∈ Gn ≡ G(0)
n ∩ G(1)

n , the
separated polynomialf (y) := S

(`;q)
λ (y), equation (5.1), is the only, up to a constant factor,

Laurent-polynomial solution to theq-difference equation (5.24).
In particular,G3 = ∅, so for n = 3 the uniqueness of the Laurent-polynomial (LP)

solution holds∀g > 0.

Proof. In the non-relativistic case [2] the analogue of equation (5.24) is a differential
equation having three regular singularities: 0, 1,∞, and the uniqueness of the LP solution
is proved by analysis of the corresponding characteristic exponents. As shown below, the
argument can be translated rather directly to theq-difference case.

Let f (y) be a non-zero Laurent-polynomial solution to (5.24) or, equivalently, (5.25).
Then, subsituting into (5.25) the valuesy = q−j , j = 0, 1, 2, . . ., one observes thatf (q−j )
can be determined recursively, starting fromf (1) since the factor(y; q)k cuts away the
terms withk > j . The only obstacle could be the vanishing of the factor(qk+1`ny; q)n−k−1

for k = 0 which may happen only forg ∈ G(1)
n . Supposeg /∈ G(1)

n . Then it is sufficient to
use the fact that any Laurent polynomial vanishing on a countable set vanishes identically.
It follows that, first,f (1) 6= 0 for any non-zero LP solution and, second, any two non-zero
LP solutions are proportional, in particular to the standard solutionS

(`;q)
λ (y).

Instead of the sequencey = q−j one can takey = qj`−n and use the same argument.
Note that the above recursive process is the exact analogue of the Taylor series expansion
abouty = 1 in the non-relativistic case.
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On the other hand, a similar argument works with expansion about 0 or∞. Substituting
in (5.24) the expansionf (y) = ∑k+

k=k− fky
k one obtains the(n+2)-term recurrence relation∑n+1

j=0 Akjfk−j = 0 for fk. The ‘boundary’ coefficientsAk0 andAk,n+1 have the simple form

Ak0 = (−1)n`n(n−1)/2
n∏
j=1

(qk − qλj `1−j ) (5.27a)

Ak,n+1 = −
(
`

q

)n(n+1)/2 n∏
j=1

(qk − qλj+n+1`n−j ). (5.27b)

Supposeg /∈ G(0)
n . Then, sincè = q−g, the coefficientAk0 vanishes only fork = λ1,

andAk,n+1 = 0 only for k = λn + n + 1. Hence inevitablyk− = λ1, k+ = λn, and the
coefficientsfk are determined recursively in a unique way starting fromfλ1 or fλn which
proves the uniqueness of the LP solution. �

The question as to whether the uniqueness of the LP solution really breaks forg ∈ Gn,
still remains open.

It would be interesting to strengthen the above result.

Conjecture 2.The equation (5.24) with free parametershj has a polynomial solution only
for hj given by (3.9) andλ = {λ1 6 λ2 6 · · · 6 λn} ∈ Zn.

6. Discussion

The results of the present paper generalize those of [2] obtained for the Calogero–
Sutherland model and Jack polynomials to the case of the Ruijsenaars model and Macdonald
polynomials. In the non-relativistic limit ¯h → 0, g = constant, the HamiltoniansHk,
operatorM, separated polynomialsS and equations for them go over into the corresponding
objects described in [2].

The crucial element of our approach is the operator identity (4.13) which allows us to
prove the factorization (4.3) ofMP(`;q)λ and thus to establish the separation of variables.
The identity (4.13) is apparently a quantum analogue of the characteristic equation for
the classical Lax operator. Moreover, the kernelM can be considered as a collection of
eigenfunctions to the quantized separation variablesyj describing thus the change of basis
from ‘t-representation’ to ‘y-representation’. Although these analogies with the classical
inverse scattering method proved to be useful as a heuristic tool for finding SoV for quantum
integrable systems [1], their algebraic/geometric origin is yet to be cleared up.

An interesting problem is to search for alternative forms ofM. We have presented two
descriptions ofM here: an analytical one, equation (4.1), in terms of the Askey–Wilson
integral, and an algebraic one, equation (4.31), in terms of the basispjkν . Our study of
M is based mainly on the analytical definition. It would be interesting also to develop the
theory ofM based entirely on the algebraic definition, and, in particular, to give a purely
algebraic proof of the identity (4.13).

When our work was close to being finished we became aware of the preprint [17]
of Mangazeev addressing the same problem of SoV forA2 Macdonald polynomials. His
proposal for the operatorM is different from ours, using aq-integral rather than a contour
integral as we do. Some of his arguments are quite formal: for instance, the expressions
with the 6ψ6-series he uses as a final result are divergent. It seems that our choice ofM,
compared with that of [17], allows one to overcome the problems of convergence of the
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q-integral and to obtain explicit expressions forM−1 and action ofM on polynomials. Still,
the problem of representingM as aq-integral seems to deserve further consideration.

Although we can predict the form of the separation polynomialS
(`;q)
λ (y) for the

n-particle case and have studied it in detail (section 5), the correspondingn-particle
generalization of the kernelM is not yet clear, so it remains an open problem to separate
variables for theAn−1 Macdonald polynomials forn > 3.

In fact, there are infinitely many ‘separating’ operatorsM(n), since for any choice ofcλ
the operator defined as

M(n) : P (`;q)λ (t1, . . . , tn) → cλx
|λ|

n−1∏
j=1

S
(`;q)
λ (yj ) (6.1)

will serve the purpose. The genuine problem, however, is to choose the coefficientscλ
in such a way that the corresponding kernelM(n) is given by an explicit expression that
generalizes (4.2).
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Appendix A. Formulae from q-analysis

For the reader’s convenience, we have collected here the most important definitions and
formulae fromq-analysis used in the main body of the paper. For references see [10–13].
Especially useful for practical calculations is the collection of formulae in [10, appendices I
and II]. Throughout the text it is assumed that 0< q < 1.

The q-shifted factorial and its generalizations are defined as

(a; q)0 := 1 (a; q)k := (1 − a)(1 − aq) · · · (1 − aqk−1) k = 1, 2, . . . (A.1)

(a; q)∞ :=
∞∏
k=0

(1 − aqk) (x; q)α = (x; q)∞
(qαx; q)∞ α ∈ C (A.2)

(a1, a2, · · · , an; q)k := (a1; q)k(a2; q)k · · · (an; q)k k = 0, 1, 2, . . . or ∞. (A.3)

Note the useful relations

(qx; q)α = 1 − qαx

1 − x
(x; q)α (q−1x; q)α = 1 − q−1x

1 − qα−1x
(x; q)α. (A.4)

We also make use of theq-binomial coefficient[n
k

]
q

:= (q; q)n
(q; q)k(q; q)n−k k = 0, 1, . . . , n (A.5)
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the q-gamma andq-beta functions

0q(z) = (q; q)∞
(qz; q)∞(1 − q)z−1

0q(z + 1) = 1 − qz

1 − q
0q(z) (A.6)

Bq(a, b) = 0q(a)0q(b)

0q(a + b)
= (1 − q)

(q, qa+b; q)∞
(qa, qb; q)∞ (A.7)

the q-integral ∫ 1

0
dq t f (t) := (1 − q)

∞∑
k=0

f (qk)qk (A.8)

and the basic hypergeometric series (n ∈ Z>0)

nφn−1

[
a1, . . . , an

b1, . . . , bn−1
; q, y

]
:=

∞∑
k=0

(a1, . . . , an; q)k
(q, b1, . . . , bn−1; q)k y

k |y| < 1. (A.9)

Denoting expression (A.9) byf (y), we observe that it satisfies thenth orderq-difference
equation, see [14] and [12, section 2.12.3]:{

y

n∏
k=1

(1 − akY )−
n∏
k=1

(1 − q−1bkY )

}
f (y) = 0 (A.10)

where(Yf )(y) := f (qy) andbn ≡ q.
The summation formula for the1φ0 (q-binomial series) is

1φ0

[
a

−; q, y
]

≡
∞∑
k=0

(a; q)k
(q; q)k y

k = (ay; q)∞
(y; q)∞ |y| < 1. (A.11)

TheφD-typeq-Lauricella function [13, 15] of then− 1 variablesxj is a multi-variable
generalization of the basic hypergeometric series:

φD

[
a′; b′

1, . . . , b
′
n−1

c
; q; x1, . . . , xn−1

]
:=

∞∑
k1,...,kn−1=0

(a′; q)k1+···+kn−1

(c; q)k1+···+kn−1

n−1∏
j=1

(b′
j ; q)kj xkjj
(q; q)kj

.

(A.12)

Andrews [16] has found thatφD can be expressed in terms of the basic hypergeometric
function nφn−1 of one variable:

φD

[
a′; b′

1, . . . , b
′
n−1

c
; q; x1, . . . , xn−1

]
= (a′, b′

1x1, . . . , b
′
n−1xn−1; q)∞

(c, x1, . . . , xn−1; q)∞

×nφn−1

[
c/a′, x1, · · · , xn−1

b′
1x1, . . . , b′

n−1xn−1
; q, a′

]
. (A.13)

Our main technical tool, on which the proof of the main theorem (theorem 3) depends,
is the famous Askey–Wilson integral ([10, section 6.1], [11, section 2.6]). Let

w(a, b, c, d; t) := (t2, t−2; q)∞
(at, at−1, bt, bt−1, ct, ct−1, dt, dt−1; q)∞ . (A.14)

Then
1

2π i

∫
0abcd

dt

t
w(a, b, c, d; t) = 2(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞ . (A.15)
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The cycle0abcd depends on the parametersa, b, c, d and is defined as follows. Let
Cz,r be the anticlockwise-oriented circle with centrez and radiusr.

If |a| , |b| , |c| , |d| < 1 then 0abcd = C0,1. The identity (A.15) can be continued
analytically for values of the parametersa, b, c, d outside the unit circle provided the cycle
0abcd is deformed appropriately. In the general case

0abcd = C0,1 +
∑

x=a,b,c,d

∑
k>0

|x|qk>1

(Cxqk,ε − Cx−1q−k ,ε) (A.16)

whereε is small enough forCx±1q±k ,ε to encircle only one pole of the denominator.
The following formulae are useful when studying the classical and non-relativistic limits

of the quantum Ruijsenaars model. Both correspond to ¯h → 0, q = e−h̄ → 1 and differ
only in the behaviour of̀ (3.5). Asq ↑ 1

(x; q)α → (1 − x)α (A.17)

(qα; q)k
(1 − q)k

→ (α)k := α(α + 1) · · · (α + k − 1) (A.18)

nφn−1

[
qα1, . . . , qαn

qβ1, . . . , qβn−1
; q, y

]
→ nFn−1

[
α1, . . . , αn

β1, . . . , βn−1
; y

]
(A.19)

where nFn−1 is the standard (generalized) hypergeometric series, and finally (see
[9, section 2.5, corollary 10]):

ln(x; q)∞ = −h̄−1 Li 2(x)+ 1
2 ln(1 − x)+ O(h̄) x ∈ (0, 1). (A.20)

Appendix B. The operator Mαβ

In this section the results concerning the two-parametric generalizationMαβ of the one-
parametric operator familyM ≡ Mg,2g studied in the main text are collected. It is an open
question whetherMαβ provides a SoV for some integrable model.

Let us substitute in the Askey–Wilson integral weightw(a, b, c, d; t), equation (A.14),
the values

a = sqα/2 b = s−1qα/2 c = rqβ/2 d = r−1qβ/2 (B.1)

and introduce the notation (quantum analogue of (2.30))

Lq(ν; x, y) := (νxy, νxy−1, νx−1y, νx−1y−1; q)∞. (B.2)

The kernel

Kαβ(r, s | t) := w(sqα/2, s−1qα/2, rqβ/2, r−1qβ/2; t) = (t2, t−2; q)∞
Lq

(
qα/2; s, t) Lq

(
qβ/2; r, t) (B.3)

defines the integral operator

Kαβ : f (t) → 1

2π i

∫
0rsαβ

dt

t
Kαβ(r, s | t)f (t) (B.4)

the contour0rsαβ being obtained from0abcd , equation (A.16), by the substitutions (B.1).
Using the Askey–Wilson integral (A.15) we then obtain the formula

Kαβ : 1 → 2Bq(α, β)

(1 − q)(q; q)2∞ Lq
(
q(α+β)/2; r, s) . (B.5)
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Now we introduce the operatorMαβ

Mαβ = (Kαβ · 1)−1 ◦Kαβ (B.6)

so thatM : 1 → 1, having the kernel

Mαβ(r, s | t) = (1 − q)(q; q)2∞(t2, t−2; q)∞ Lq
(
q(α+β)/2; r, s)

2Bq(α, β)Lq
(
qα/2; s, t) Lq

(
qβ/2; r, t) . (B.7)

The kernel M (4.2) studied in section 4 is obtained fromMαβ (B.7) after the
substitutions

α = g β = 2g q−g = `

r = t+ = y+`
3
2 s = y− t = t−.

(B.8)

It is natural to think ofMαβ as acting on the space Ref(t) of the reflexive (invariant
w.r.t. t → t−1) Laurent polynomials int . Consider a Laurent polynomialRαβj1j2k1k2

∈ Ref(t),
j1,2, k1,2 ∈ Z>0

R
αβ

j1j2k1k2
(t) := (qα/2st, qα/2st−1; q)j1(q

α/2s−1t, qα/2s−1t−1; q)j2

×(qβ/2rt, qβ/2rt−1; q)k1(q
β/2r−1t, qβ/2r−1t−1; q)k2. (B.9)

Using the obvious identity

Kαβ(r, s | t)Rαβj1j2k1k2
(t) = Kα+j1+j2,β+k1+k2

(
rq(k1−k2)/2, sq(j1−j2)/2

∣∣∣ t) (B.10)

together with (B.5), we obtain the formula for the action ofMαβ on the Laurent polynomials

Mαβ : Rαβj1j2k1k2
→ (qα; q)j1+j2(q

β; q)k1+k2

(qα+β; q)j1+j2+k1+k2

(q(α+β)/2rs; q)j1+k1(q
(α+β)/2rs−1; q)j2+k1

×(q(α+β)/2r−1s; q)j1+k2(q
(α+β)/2r−1s−1; q)j2+k2. (B.11)

The set of polynomialsRαβj1j2k1k2
is rich enough to choose from it a basis in Ref(t), for

instance

pβν (t) := R
αβ

00ν0(t) ≡ (qβ/2rt, qβ/2rt−1)ν ν = 0, 1, 2, . . . . (B.12)

More correctly, sincepβν (t) = (−1)νqν(ν−1+β)/2rν(tν + t−ν)+ lower-order terms,pβν (t)
is a basis in the space of reflexive Laurent polynomials in the variablet with coefficients
from Ref(r). The specialization of equation (B.11)

Mαβ : pβν (t) → (qβ; q)ν
(qα+β; q)ν p

α+β
ν (s) (B.13)

thus provides a tool for explicitly calculating the action ofM on any polynomial∈ Ref(t).
Analysing equation (B.13) one obtains the following statement.

Proposition 13.Let f ∈ Ref(t) and supposef has the parityσ that isf (−t) = (−1)σ f (t).
Let Mαβ : f → F . ThenF ∈ Ref(r) ⊗ Ref(s), F(r, s) = F(s, r)|α↔β , F(−r,−s) =
(−1)σF (r, s).

The integral operatorMαβ simplifies drastically when one of the parametersα, β takes
a negative integer value.
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Proposition 14.Let α ∈ Z60. ThenMαβ turns into theq-difference operator of order−α:

Mαβ : f (t) →
−α∑
k=0

ξk(r, s)f (q
k+α/2s) (B.14)

where

ξk(r, s) = (−1)kq−k(k−1)/2

[
−α
k

]
q

s−2k(1 − q−α−2ks−2)

× (q
(α+β)/2rs, q(α+β)/2r−1s; q)k(q(α+β)/2rs−1, q(α+β)/2r−1s−1; q)−α−k

(qα+β; q)−α(q−ks−2; q)1−α
.

(B.15)

Proof. Instead of analysing the degeneration of the integral operator defined by the kernel
(B.7) it is easier to study the action ofMαβ on the basic polynomialspβν (t), equation (B.12).

Substitutingf (t) := pβν (t) in (B.14) and using (B.13) we obtain, after simplification,
the equality
−α∑
k=0

ξk(r, s)
(q(α+β)/2+νrs; q)k(q(α+β)/2+νrs−1; q)−α−k
(q(α+β)/2rs; q)k(q(α+β)/2rs−1; q)−α−k

= (qα+β+ν; q)−α
(qα+β; q)−α (B.16)

which, after substituting (B.15) and making a series of elementary transformations (see
[10, appendix I]), can be put into the form
−α∑
k=0

q(1−α−β−ν)k (q
α, q(α+β)/2+νrs, q(α+β)/2r−1s, qαs2, q1+α/2s,−q1+α/2s; q)k
(q, q(α−β)/2+1rs, q(α−β)/2+1−νr−1s, qs2, qα/2s,−qα/2s; q)k

= (q1−β−ν, q1+αs2; q)−α
(q(α−β)/2+1rs, q(α−β)/2+1−νr−1s; q)−α (B.17)

identical to the summation formula [10, equation (II.21)]:

6φ5

[
a, qa

1
2 ,−qa 1

2 , b, c, qα

a
1
2 ,−a 1

2 , aq/b, aq/c, aq1−α; q,
aq1−α

bc

]
= (aq, aq/bc; q)−α
(aq/b, aq/c; q)−α

(B.18)

for the following identification of the parameters

a = qαs2 b = q(α+β)/2r−1s c = q(α+β)/2+νrs. (B.19)

By the symmetryα ↔ β, r ↔ s the corresponding statement can be proved for
β ∈ Z60. �

To determine the inversion ofMαβ let us think ofr as a parameter and ofMαβ as an
operatorMr

αβ : Ref(t) → Ref(s) : f (t) → F(s). Then, applyingMr
αβ to the basispβν (t),

equation (B.12), and inverting (B.13), we obtain the following statement.

Proposition 15.The inversion formula forMr
αβ is(

Mr
αβ

)−1 = Mr
−α,α+β. (B.20)

The corresponding kernel is

M̃r
αβ(t | s) = (1 − q)(q; q)2∞(s2, s−2; q)∞ Lq

(
qβ/2; r, t)

2Bq(−α, α + β)Lq
(
q−α/2; s, t) Lq

(
q(α+β)/2; r, s) . (B.21)
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